## TOPIC 20-5: TESSELLATIONS

Tessellation: A repeating pattern that completely covers a plane with no gaps or overlaps. The measures of the angles that meet at each vertex must add up to $360^{\circ}$.

Let's determine which REGULAR polygons will tessellate...

| POLYGON | MEASURE OF <br> ONE INTERIOR <br> ANGLE: <br> 180 $(\boldsymbol{n}-\mathbf{2})$ | $360^{\circ}$ <br> $\boldsymbol{n}$ | DOE int. angle <br> TESSELLATE? |
| :---: | :---: | :---: | :---: |
| TRIANGLE |  |  |  |
| SQUARE |  |  |  |
| PENTAGON |  |  |  |
| HEXAGON |  |  |  |
| HEPTAGON |  |  |  |
| OCTAGON |  |  |  |

EXAMPLE 1: Determine if a regular 20-gon will tessellate.


You have determined that a square WILL tessellate.
Will a square tessellate if it is MODIFIED???

1) Cut out one of the two squares.
2) Draw a "curve" or shaped piece on one side of the square.

3) Cut along the "curve" then translate this piece to the opposite side and tape.

4) Do the same thing with the other pair of sides.

5) Will the "square" still tessellate?

## Cut out the second square.

1) Draw a "curve" or shaped piece on one side of the square that begins in the upper left hand corner and ends at the lower left hand corner.

2) Cut along the "curve" then rotate this piece $90^{\circ}$ clockwise and tape it to the adjacent side as shown.

3) Draw a "curve" that begins in the upper left hand corner and ends in the upper right hand corner.

4) Cut along the "curve" then rotate this piece $90^{\circ}$ counter-clockwise and tape it to the adjacent side as shown.

5) Will the "square" still tessellate?
