TOPIC 20-4: DILATIONS AND SIMILARITY

Recall... A DILATION produces a figure that is similar to the original figure given (reduction/enlargement).

The SCALE FACTOR tells you how much larger or smaller the dilated figure is compared to the original.

In a reduction, the scale factor is \qquad .

In an enlargement, the scale factor is \qquad .

EXAMPLE 1: Use "slope" to produce a dilation of $\triangle A B C$ with a scale factor of 2 using the origin as your center of dilation.

$A^{\prime}(\square$, _()
\qquad ,

C' \qquad ,

EXAMPLE 2: Use "slope" to produce a dilation of $\triangle A B C$ in Example 1 with a scale factor of 2 using B as your center of dilation.
\qquad , \qquad
\qquad ,

\qquad

EXAMPLE 3: $\triangle \mathrm{ABC}$ has coordinates at $\mathrm{A}(0,3), \mathrm{B}(3,6)$, and $\mathrm{C}(6,0)$. Give the new coordinates of $\triangle A B C$ after it has been dilated with a scale factor of $2 / 3$. Use the origin as your center of dilation.
 There is a second method for dilating a figure when the slope cannot be determined:

EXAMPLE 4: Dilate the $\triangle A B C$ below. Use a scale factor of $2 . T$ is the point of dilation.

EXAMPLE 5: Δ RST has vertices $\mathrm{R}(1,2), \mathrm{S}(1,4)$ and $\mathrm{T}(-3,4)$. Rotate Δ RST 90° counterclockwise about the origin and then reflect it across the y-axis.

