TOPIC 20-3: ROTATIONS

Rotations: A transformation about a point P, known as the center of rotation, such that each point and its image are the same distance from P.

Two types:

Determined by degrees:
90° :
270 ${ }^{\circ}$
180° :
360° :

Rotational Symmetry: A figure in the plane has rotational symmetry when the figure can be mapped onto itself by a rotation of 180° or less about the center of the figure.
EXAMPLE 1: Describe each rotation \& tell if the figure has rotational symmetry.
a)

b)
$D \rightarrow Q$
c)

EXAMPLE 2: Draw the resulting triangles when the triangle is rotated $90^{\circ}, 180^{\circ}$, and 270° clockwise about the origin.

After 90° Rotation: After 270° Rotation:
A' \qquad ,
\qquad
\qquad , _
B' \qquad ,
\qquad
\qquad , \qquad
C' \qquad , \qquad)
C' \qquad , __

After 180° Rotation:
$\mathrm{A}^{\prime}($ \qquad ,
 B' \qquad , \qquad
\qquad , __

EXAMPLE 3: Rotate the figure below 90° clockwise about the origin and define its new coordinates.

\qquad
\qquad
,

C' \qquad ,

D' \qquad ,

\qquad ,

EXAMPLE 4: Rotate the figure below 180° about the origin and define its new coordinates.

\qquad ,
$E^{\prime}($ \qquad

F^{\prime} \qquad , \qquad

EXAMPLE 5: Using the figure in EXAMPLE 4, find the equation of the line containing $\overline{F D}$.

EXAMPLE 6: Rotate the figure below 90° counter-clockwise about the origin and define its new coordinates.

EXAMPLE 7: A ferris wheel has a radius of 106 feet and takes 40 seconds to make a complete rotation. A car starts at position (106, 0). What are the approximate coordinates of the car's location after 5 seconds?

