TOPIC 15-4: GEOMETRIC PROBABILITY

Probability is the likelihood that an event will happen.
Probabilities are determined by:

$$
P(\text { event })=\frac{\# \text { of outcomes in the event }}{\# \text { of outcomes in the sample space }}
$$

In geometric probability, the probability of an event is based on a ratio of geometric measures such as length or area. The probability that a point in a figure will lie in a particular part of the figure can be calculated by dividing the length or area of the part of the figure by the length or area of the entire figure.

$$
P(B)=\frac{\text { area of region } B}{\text { area of region } A}
$$

EXAMPLE 1: A point is chosen randomly on $\overline{A D}$. Find the probability that the point is on $\overline{A C}$. Now find the probability that the point is not on $\overline{A B}$.

EXAMPLE 2: Darts are thrown at a circular dartboard. If a dart hits the board, what is the probability that the dart lands in the bulls-eye?

EXAMPLE 3: Find the probability that a point chosen at random lies in the shaded region. Round to the nearest hundredth, if necessary.

EXAMPLE 4: Find the probability that a point chosen at random lies in the shaded region. Round to the nearest hundredth, if necessary.

EXAMPLE 5: Find the probability that a point chosen at random lies in the shaded region. Round to the nearest hundredth, if necessary.

EXAMPLE 6: Find the probability that a point chosen randomly inside the rectangle is in the equilateral triangle. Now find the probability that a point chosen randomly inside the rectangle is in the trapezoid. Round to the nearest hundredth.

