TOPIC 14-1: INSCRIBED ANGLES

TERM:	DEFINITION:	SKETCH:
Inscribed Angle	An angle whose vertex is on the circle, and whose sides contain chords of the circle.	

EXAMPLE 1: Name ALL the inscribed angles and their corresponding intercepted arcs below.

Inscribed angles/Intercepted Arc:

THEOREM: If an angle is inscribed in a circle, then the measure of the angle is half the measure of its intercepted arc.

EXAMPLE 2: Given that $\widehat{BC} = 100^\circ$, find the value of 'x' in circle O.

x = _____

THEOREM: If two inscribed angles of a circle or congruent circles intercept congruent arcs or the same arc, then the angles are congruent.

EXAMPLE 3: In circle Q, m \widehat{ST} = 68°. Find the m $\angle 1$ and m $\angle 2$.

m∠1 = _____

m∠2 = _____

THEOREM: If an inscribed angle of a circle intercepts a semicircle, then the angle is a right angle.

EXAMPLE 4: Find the value of 'x'.

X = _____

THEOREM: If a quadrilateral is inscribed in a circle, then its opposite angles are supplementary.

EXAMPLE 6: Quadrilateral QRST is inscribed in circle C. If $m \angle T = 95^{\circ}$, $m \angle S = 100^{\circ}$, find $m \angle Q$ and $m \angle R$.

m∠Q = _____

m∠R = _____

EXAMPLE 7: Find the value of the inscribed angle.

EXAMPLE 8: Hexagon ABCDEF is inscribed in circle O. All sides of ABCDEF are congruent. Find the following.

