TOPIC 14-1: INSCRIBED ANGLES

TERM:	DEFINITION:	SKETCH:
Inscribed Angle	An angle whose vertex is on the circle, and whose sides contain chords of the circle.	

EXAMPLE 1: Name ALL the inscribed angles and their corresponding intercepted arcs below.

Inscribed angles/Intercepted Arc:

\qquad

- - - - - - - - - - - - - - - - - - - - - - - - -

THEOREM: If an angle is inscribed in a circle, then the measure of the angle is half the measure of its intercepted arc.

EXAMPLE 2: Given that $m \overparen{B C}=100^{\circ}$, find the value of ' x ' in circle O.

If two inscribed angles of a circle or congruent circles
 THEOREM: intercept congruent arcs or the same arc, then the angles are congruent.

EXAMPLE 3: In circle $\mathrm{Q}, \mathrm{m} \mathrm{ST}=68^{\circ}$. Find the $\mathrm{m} \angle 1$ and $\mathrm{m} \angle 2$.
$\mathrm{m} \angle 1=$ \qquad

$\mathrm{m} \angle 2=$ \qquad

THEOREM: If an inscribed angle of a circle intercepts a semicircle, then the angle is a right angle.

EXAMPLE 4: Find the value of ' x '.

$\mathrm{X}=$ \qquad

EXAMPLE 5: In circle A, $\mathrm{m} \angle 1=(6 \mathrm{x}+11)^{\circ}, \mathrm{m} \angle 2=(9 \mathrm{x}+19)^{\circ}$, $\mathrm{m} \angle 3=(4 y-25)^{\circ}, \mathrm{m} \angle 4=(3 y-9)^{\circ}$, and $\mathrm{PQ} \cong \overparen{R S}$.
Find $m \angle 1, m \angle 2, m \angle 3$, and $m \angle 4$.
\qquad
$\mathrm{m} \angle 2=$ \qquad
$\mathrm{m} \angle 3=$ \qquad
$\mathrm{m} \angle 4=$ \qquad

THEOREM: $\begin{aligned} & \text { If a quadrilateral is inscribed in a circle, then its } \\ & \text { opposite angles are supplementary. }\end{aligned}$ opposite angles are supplementary.

EXAMPLE 6: Quadrilateral QRST is inscribed in circle C. If $\mathrm{m} \angle \mathrm{T}=95^{\circ}, \mathrm{m} \angle \mathrm{S}=100^{\circ}$, find $\mathrm{m} \angle \mathrm{Q}$ and $\mathrm{m} \angle \mathrm{R}$.

$\mathrm{m} \angle \mathrm{Q}=$ \qquad
$\mathrm{m} \angle \mathrm{R}=$ \qquad

EXAMPLE 7: Find the value of the inscribed angle.

EXAMPLE 8: Hexagon ABCDEF is inscribed in circle O. All sides of $A B C D E F$ are congruent. Find the following.

a) $m \overparen{C D}=$
b) $\mathrm{m} \angle \mathrm{CFE}=$ \qquad
c) $\mathrm{m} \angle \mathrm{BCD}=$ \qquad

