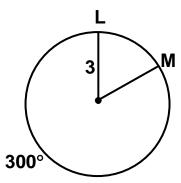

TOPIC 13-5: ARC LENGTH & AREA OF SECTORS

ARC LENGTH is the measure of the length of an arc of the circle. Remember that an arc is a "piece" of the circumference.


Since you are finding a part of the circumference, you can set up a proportion to find the arc length:

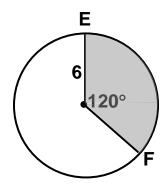
$$\frac{arc\ length}{circumference} = \frac{x^{\circ}}{360^{\circ}}$$

EXAMPLE 1: Find the EXACT length of EF below.

EXAMPLE 2: Find the length of LM below, rounded to the nearest thousandth.

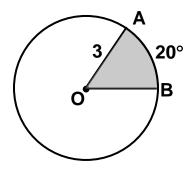
1

A **SECTOR** is a "slice" of the circle bounded by _____


_____ and an _____. When finding the area of a

sector, you are finding part of the area of the circle.

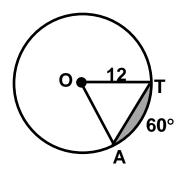
Since you are finding a part of the area, you can set up a proportion to find the sector area: $sector area x^{\circ}$


 $\frac{\text{circle area}}{\text{circle area}} = \frac{x}{360^{\circ}}$

EXAMPLE 3: Find the EXACT area of the sector:

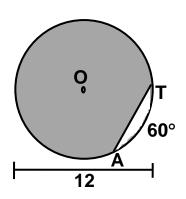
Sector Area = ____

EXAMPLE 4: Find the area of the sector to the nearest hundredth.


Sector Area = _____

EXAMPLE 5: The area of sector AOB is 22π m² and the radius is 12 m. Find the measure of \angle AOB.

m∠AOB =


EXAMPLE 6: The length of arc AB is 2π ft and the measure of \angle AOB is 45°. Find the length of the radius.

EXAMPLE 7: Find the EXACT area of the shaded region.

Area = _____

EXAMPLE 8: Find the EXACT area of the shaded region.

Area = _____