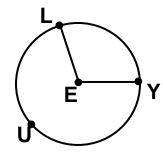
TOPIC 13-2: ARCS, SEMICIRCLES, & CENTRAL ANGLES

Some important concepts...

- An **ARC** is a _____ of the circumference of a circle.
- A CENTRAL ANGLE is one that has its vertex at ______
 of the circle and the sides are radii of the circle.
- A MINOR ARC is one with a measure ______
 . It is named by its ______.
- A *MAJOR ARC* is one with a measure ______.

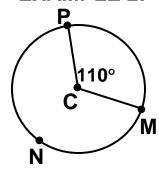

 ______. It is named by its endpoints and ______ on the arc.

EXAMPLE 1: Name the following.

The central angle:

The minor arc:

The major arc:

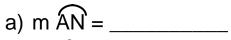

THEOREM: SUM OF CENTRAL ANGLES

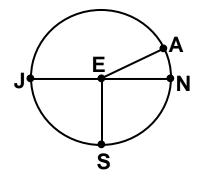
The sum of the measures of the central angles of a circle with no interior points in common is _____.

Arcs are measured by their corresponding central angles.

Central Angle = Arc

EXAMPLE 2:

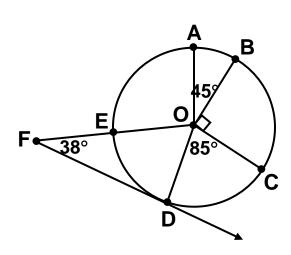



- m∠PCM = _____
- m PM = _____
- m PNM=
- What kind of arc is PM? How do you know?

A **SEMICIRCLE** is an arc with a measure of _____. It is named by its endpoints and another point on the arc.

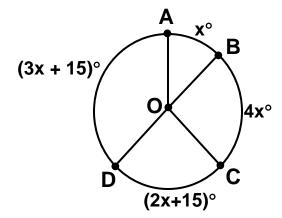
EXAMPLE 3: In circle E, m \angle AEN = 18°, \overline{JN} is a diameter, and m \angle JES = 90°. Find each measure.

EXAMPLE 4: \overrightarrow{FD} is a tangent to circle O. Based on the angle measures given, find the measure of each of the following:

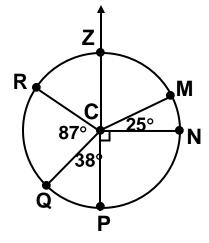

c)
$$\widehat{AB} = \underline{\hspace{1cm}}$$

d)
$$\widehat{AD} = \underline{\hspace{1cm}}$$

e)
$$\widehat{AC} =$$


h)
$$\widehat{ACD} = \underline{\hspace{1cm}}$$

j)
$$\widehat{AE} =$$


EXAMPLE 5: Find the measure of each of the following:

- a) ∠AOB = _____
- b) ∠BOC = _____
- c) ∠COD = _____
- d) ∠AOD = _____

EXAMPLE 6: Find the measure of each arc in circle C and Classify it. In the figure \overline{PZ} is a diameter.

- a) PN = _____; _____
- b) ZQP = _____; _____
- c) $\widehat{RZ} =$ _____;
- d) ZMP = _____; _____
- e) $\widehat{\mathsf{RM}} = \underline{\hspace{1cm}};$
- f) NQP = ____; ____
- g) $\widehat{QN} =$ _____;
- h) RP = ____; ____

