TOPIC 13－2：ARCS，SEMICIRCLES，\＆CENTRAL ANGLES

Some important concepts．．．
－An ARC is a \qquad of the circumference of a circle．
－A CENTRAL ANGLE is one that has its vertex at \qquad of the circle and the sides are radii of the circle．
－A MINOR ARC is one with a measure \qquad
\qquad ．It is named by its \qquad ．
－A MAJOR ARC is one with a measure \qquad
\qquad ．It is named by its endpoints and on the arc．

EXAMPLE 1：Name the following．
The central angle： \qquad
The minor arc： \qquad
The major arc：

THEOREM：SUM OF CENTRAL ANGLES
The sum of the measures of the central angles of a circle with no interior points in common is \qquad ．

Arcs are measured by their corresponding central angles．
Central Angle＝Arc
ーーーーーーーーーーーーーーーーーーーーーーーーーー EXAMPLE 2：
－ $\mathrm{m} \angle \mathrm{PCM}=$ \qquad

－$m \mathrm{PM}=$ \qquad
－m PNM $=$ \qquad
－What kind of arc is PM？How do you know？

A SEMICIRCLE is an arc with a measure of \qquad . It is named by its endpoints and another point on the arc.
 $\mathrm{m} \angle \mathrm{JES}=90^{\circ}$. Find each measure.
a) $m \widehat{A N}=$ \qquad
b) $m \widehat{J A}=$ \qquad
c) $m \overparen{J A S}=$ \qquad

EXAMPLE 4: $\overrightarrow{F D}$ is a tangent to circle O. Based on the angle measures given, find the measure of each of the following:
a) $\mathrm{m} \angle \mathrm{DOF}=$ \qquad
b) $\mathrm{m} \angle \mathrm{EOA}=$ \qquad
c) $\overparen{A B}=$ \qquad
d) $\overparen{A D}=$ \qquad
e) $\overparen{A C}=$ \qquad
f) $\mathrm{BC}=$ \qquad
g) $\overparen{A D C}=$ \qquad
h) $A C D=$ \qquad
i) $\mathrm{ED}=$ \qquad

j) $\mathbb{A E}=$

EXAMPLE 5: Find the measure of each of the following:
a) $\angle \mathrm{AOB}=$ \qquad
b) $\angle \mathrm{BOC}=$ \qquad
c) $\angle \mathrm{COD}=$ \qquad
d) $\angle \mathrm{AOD}=$ \qquad

EXAMPLE 6: Find the measure of each arc in circle C and Classify it. In the figure $\overline{\boldsymbol{P Z}}$ is a diameter.
a) $\mathrm{PN}=$
b) $\overparen{Z Q P}=$ \qquad ;
c) $\overparen{R Z}=$ \qquad ; \qquad
d) $\overparen{Z M P}=$ \qquad ;
\qquad
e) $\mathrm{RM}=$ \qquad ; \qquad

f) $\overparen{N Q P}=$ \qquad ;
g) $Q N=$ \qquad ;
h) $\overparen{R P}=$ \qquad ;

