TOPIC 13-1: LINES THAT INTERSECT CIRCLES

EXAMPLE 1: Q is the center of this circle.
a) Name the circle:
b) Name a radius shown: \qquad
c) What is the length of any radius of this circle?

d) What would be the length of any diameter of this circle?
e) Name all the interior points shown: \qquad
f) Name all the exterior points shown: \qquad

Some other components of a circle that you need to be able to identify...

TERM:
Chord
Secant

Tangent

Radius

Diameter

EXAMPLE 2: Name each of the following:
a) Center: \qquad
b) All Radii: \qquad
c) All Chords: \qquad
d) All Secants: \qquad
e) Diameter: \qquad
f) Tangent: \qquad

g) Point of Tangency: \qquad
h) Interior Points:
i) Exterior Points: \qquad

EXAMPLE 3: Refer to $\odot \mathrm{C}$ with tangent $\overline{A B}$. Find ' x '.

THEOREM:

If two segments from the same EXTERIOR point are tangent to a circle, then they are congruent.

EXAMPLE 4: Find the value of ' x '.

When circles are inscribed in polygons, the polygons are said to be CIRCUMSCRIBED polygons.

In such polygons, each side is TANGENT to the circle.

EXAMPLE 5: Δ TRW is circumscribed about $\odot A$. If the perimeter of $\Delta T R W$ is $50, T K=3$, and $W M=9.5$, find $T R$.

TR = \qquad

EXAMPLE 6: Given that $\mathrm{OA}=12, \mathrm{OB}=6$, and $\mathrm{m} \angle \mathrm{BAC} \neq 60^{\circ}$, find the following.
a) $\mathrm{OC}=$ \qquad
b) $E D=$ \qquad
c) $\mathrm{AB}=$ \qquad
d) $A C=$ \qquad
e) $\mathrm{m} \angle \mathrm{BAO}=$ \qquad
f) $\mathrm{m} \angle \mathrm{OCA}=$ \qquad

g) $\mathrm{m} \angle \mathrm{AOC}=$ \qquad
h) $m \angle E O C=$
i) $E A=$ \qquad

EXAMPLE 7: In the figure below, $\overleftrightarrow{\boldsymbol{R P}}$ is tangent to circle Q at R. Find the radius of circle Q .

$r=$
EXAMPLE 8: Find the indicated values.
$\mathrm{x}=$ \qquad
$\mathrm{m} \angle \mathrm{ABC}=$ \qquad

BC = \qquad
Diameter of circle C = \qquad

EXAMPLE 9: Find the perimeter of the polygon that circumscribes the circle.

$P=$ \qquad

