TOPIC 11-5: PROVING QUADRILATERALS

Conditions for Parallelograms

- Both pairs of opposite sides are parallel.
- One pair of opposite sides are parallel and congruent.
- Both pairs of opposite sides are congruent.
- Both pairs of opposite angles are congruent.
- One angle is supplementary to both of its consecutive angles.
- The diagonals bisect each other.

EXAMPLE 1: Determine if the quadrilateral must be a parallelogram. Justify your answer.

EXAMPLE 2: Determine if the quadrilateral must be a parallelogram. Justify your answer.

EXAMPLE 3: Show that quadrilateral ABCD is a parallelogram using one of the conditions above if $\mathrm{A}(-3,2), \mathrm{B}(-2,7), \mathrm{C}(2,4), \mathrm{D}(1,-1)$.

When you are given a parallelogram with certain properties, you can use the conditions below to determine whether the parallelogram is a rectangle, rhombus or square.

Conditions for Rectangles

- One angle is a right angle.
- Diagonals are congruent.

Conditions for Rhombi

- One pair of consecutive sides are congruent.
- The diagonals are perpendicular.
- The diagonals bisect opposite angles.

To determine that a given quadrilateral is a Square, it is sufficient to show that a figure is both a rectangle and a rhombus.

EXAMPLE 4: Determine if the conclusion is valid. If not, tell what additional information is needed to make it valid.

Given: Quad $A B C D$ where $\overline{A B} \cong \overline{C D}, \overline{B C} \cong \overline{A D}, \overline{A D} \perp \overline{D C}, \overline{A C} \perp \overline{B D}$ Conclusion: $A B C D$ is a square.

EXAMPLE 5:
Given: $\quad A B C$ with vertices $A(-6,-2), B(2,8)$, and $C(6,-2) . \overline{A B}$ has midpoint $D, \overline{B C}$ has midpoint E, and $\overline{A C}$ has midpoint F.

Prove: $A D E F$ is a parallelogram and $A D E F$ is not a rhombus

