GEOMETRY PRE-AP SPRING FINAL EXAM REVIEW

LAW OF SINES \& COSINES

$\begin{aligned} & m \angle A= \\ & a= \\ & b= \end{aligned}$	1. Solve the triangle if $\angle B=15^{\circ}, \angle C=113^{\circ}$, side $b=49$. Round answers to the nearest whole number.
Law of $\mathrm{AC}=$	2. Would you use Law of Sines or Law of Cosines to find the length of $\overline{A C}$? Find the length. Round your answer to the nearest foot.

QUADRILATERALS

Complete each statement about parallelogram MARK \& explain your answer.

3. $\angle \mathrm{MKR} \cong _$	Why?
4. $\overline{A S} \cong$	Why?
5. $\angle \mathrm{ARK}$ and supplementary.__	Why?

For each parallelogram, find the values of ' x ', ' y ', and ' z '.

6. $x=$ \qquad $y=$ \qquad $\mathrm{z}=$ \qquad	
7. $x=$ \qquad $y=$ \qquad $z=$ \qquad	

Use rhombus RSTV and the given information to find each value.

8. $\mathrm{m} \angle \mathrm{RSW}=$	If $m \angle R S T=67^{\circ}$, find the $m \angle R S W$.
9. $\mathrm{m} \angle \mathrm{STV}=$	Find $\mathrm{m} \angle \mathrm{SVT}$ if $\mathrm{m} \angle \mathrm{STV}=135^{\circ}$
10. $x=$	If $\mathrm{m} \angle \mathrm{SWT}=(2 \mathrm{x}+8)^{\circ}$, find the value of ' x '.
11. $x=$	What is the value of ' x ' if $m \angle W R V=(5 x+15)^{\circ}$ and $\mathrm{m} \angle \mathrm{WRS}=(7 \mathrm{x}-19)^{\circ}$?

Use rhombus $A B C D$ and the given information to find each value.

12.	If $m \angle B A F=28^{\circ}$, find $m \angle A C D$.
13.	Find the value of ' x ' if $m \angle A F B=(16 x+26)^{\circ}$.
14.	If $m \angle A C D=34^{\circ}$, find $m \angle A B C$.
15.	Find the value of ' x ' if $m \angle B F C=(4 x+6)^{\circ}$.
16.	What is the value of ' x ' if $m \angle B A C=(4 x+6)^{\circ}$ and $m \angle A C D=(12 x-18)^{\circ}$?

WXYZ is an isosceles trapezoid with bases $\overline{W Z}$ and $\overline{X Y}$ and median $\overline{M N}$. Use the given information to solve each problem.

17. $\mathrm{MN}=\ldots$	Find MN if $\mathrm{WZ}=11$ and $\mathrm{XY}=3$.
18. $\mathrm{XY}=\ldots$	If $\mathrm{MN}=10$ and $\mathrm{WZ}=14$, find XY.

19. $x=_$	If $M N=10 x+2, W Z=21$, and $X Y=8 x+19$,

ABCD is an isosceles trapezoid. Determine if each statement is TRUE or FALSE (circle one) and explain your reasoning.

20. $\mathrm{AC}=\mathrm{BD}$	Explain:		
TRUE or FALSE		\quad	21. $\overline{A D} \cong \overline{C B}$
:---			
TRUE or FALSE	\quad Explain:		

Quadrilateral EFGH is a rectangle. Find the value of ' x '.

23. $\mathrm{x}=\ldots, \quad$| $\mathrm{m} \angle \mathrm{HEG}=(12 \mathrm{x}+1)^{\circ}$ and |
| :--- |
| $\mathrm{m} \angle \mathrm{GEF}=(6 \mathrm{x}-1)^{\circ}$ |

PERIMETER \& AREA OF POLYGONS

Find the EXACT area of each regular polygon. Write your final, EXACT answer, with appropriate units, in the blank provided.

26. $\mathrm{A}=\ldots$	Find the area of the equilateral triangle with the indicated apothem length:
27. $\mathrm{A}=\ldots$	Find the area of the regular quadrilateral with the indicated radius:
28. $\mathrm{A}=\mathrm{l}$	
Find the area of the regular polygon	
with the given side length:	

CIRCLE BASICS

Write the term that best describes the following definitions.

29.	A segment with both endpoints on the circle.
30.	A chord that goes through the center of a circle.
31.	A line or ray that intersects a circle at two points.
32.	A line or ray that intersects a circle at exactly one point.

Find the EXACT answer for each of the following and write it in the space provided. Leave your answers in simplest form.
33. \qquad
In a given circle, the radius is 48 cm . Find the measure of the circle's diameter.
34. \qquad circles' radius.

35.	In a given circle, the diameter is 8 cm . Find the circumference of the circle.
36.	Find the area of circle P.
37.	Find the area of the circle:
38.	Find the EXACT area of the shaded region.
39.	$\overleftrightarrow{X Z}$ is a tangent to circle D at $\mathrm{Y} . \overline{D Y}$ is a radius. Find the measure of $\angle \mathrm{DYZ}$.
40.	$\overline{Z Y}$ is tangent to circle X . $\angle Y X Z=60^{\circ}, Y Z=6 \sqrt{3}$. Find the length of $\overline{X Z}$.
41.	$\overrightarrow{M L}$ and $\overrightarrow{M N}$ are tangent to circle O . $L M=6 x+2$ and $N M=38$. Find the value of ' x '.

PRISMS \& PYRAMIDS

Draw the indicated views for the isometric drawing below.

Isometric Drawing: Top View:	
47. Left View:	48. Front View:

Draw a net that would produce the indicated three-dimensional figure.
49. Triangular Prism:
50. Hexagonal Prism:

Find the indicated measure for each of the prism described below.

51. $\mathrm{V}=\mathrm{V}=\ldots$	
53. $\mathrm{TA}=\ldots$	The volume of a rectangular prism is 64 cubic feet. If one dimension were reduced to one-sixteenth it original length, a second dimension were doubled, and a third dimension remained unchanged, what would be its new volume?
54. $\mathrm{V}=\ldots$	

Draw a net that would form the indicated three-dimensional object.

55. Square Pyramid:	56. Pentagonal Pyramid:

Find the indicated measure for each of the following pyramids. Leave answers EXACT and in simplest form.

57. $\mathrm{LA}=\ldots$	Find the Lateral Area of the square pyramid.
$58 . \mathrm{V}=\square$	Find the Volume of the square pyramid from \#65.

Find the correct answer for each of the following. Write your final answer, with corresponding units, in the blank provided.
\qquad
The Volume of a rectangular pyramid is 192 cubic units. If its dimensions are reduced to one-fourth their original length. What is the Volume of the smaller pyramid?

If the dimensions of a pyramid were increased to threehalves their original length, by what factor would you multiply the original area to obtain the area of the larger pyramid?

CYLINDERS, CONES, \& SPHERES

Find the correct answer for each of the following. Write your final, EXACT answer, with its corresponding units, in the blank provided.
Find the Volume of the cylinder:

62.	The Lateral Area of a right circular cylinder is 60π square meters. The height is 12 m. Find the diameter of the base.
63.	Find the Lateral Area of the right circular cone:
64.	The Volume of a right circular cone is 72π cubic centimeters, and its height is 2 cm. Find the length of the radius.
66.	Find the Total Area of the sphere:
68.	Find the Volume of the sphere: diameter.

69.	The Volume of a cylinder is $120 \pi \mathrm{~m}^{3}$. If it's dimensions are reduced to one-half their original length, what would its new Volume be?

ARCS, CIRCLES, \& ANGLES
Write your final answer in the blank provided. Leave answers as EXACT.

75.	Find AC.
76.	If $r=6 \mathrm{~cm}$, find the EXACT length of $\widehat{A B}$.
77.	If $r=6 \mathrm{~cm}$, find the EXACT area of sector
78.	Find the EXACT area of the shaded region.
79.	Find the value of ' x '.
80.	Find the measure of $\angle 1$.

Use for problems 81-87. F and B are points of tangency.
$\mathrm{m} \widehat{A B}=50^{\circ}, \mathrm{m} \widehat{C D}=85^{\circ}, \mathrm{m} \widehat{A F}=36^{\circ}$, and $\mathrm{m} \widehat{E D}=79^{\circ} . \widehat{A D}$ is a diameter.

TRANSFORMATIONS. Map the image and give the new coordinates

88 88.

Reflect the image below across the y-axis and write the coordinates of the vertices of the new polygon.

89. ___ lines of symmetry	Draw the line(s) of symmetry for the object, then write how many total lines of symmetry it has in the blank at left.
$\begin{array}{r} \text { 90. } \mathrm{S}^{\prime}(\square,-\quad) \\ \mathrm{T}^{\prime}(\square,-\square) \\ \mathrm{U}^{\prime}(\square, \square) \\ \mathrm{D}^{\prime}(\square, \square) \\ \mathrm{Y}^{\prime}(\square, \square) \end{array}$	Translate the polygon according to the ordered pair translation, then state the coordinates of the new polygon. $(x+7, y-8)$
91. \qquad $A^{\prime}($ \qquad , _ $R^{\prime}($ \qquad , \qquad D' \qquad \qquad	Rotate the figure below 180°, then state the new coordinates of its vertices.
$\left.\begin{array}{rl} \text { 92. } \mathrm{N}^{\prime}\left(_\right. & \mathrm{D}^{\prime}(\square \end{array}\right)$	Dilate the figure below using E as your center and a scale factor of 3.

