## REVIEW \#19: FUNCTIONS

Draw sketches as necessary, show all work, and simplify answers.

| 1. <br> a) $\qquad$ <br> b) $\qquad$ <br> c) $\qquad$ | Use the following sets of points to answer the questions below: $(-2,7),(0,4),(-5,1),(3,2),(4,1),(-2,3)$ <br> a) Is this set of points a function? <br> b) State the domain. <br> c) State the range. |
| :---: | :---: |
| $2 .$ | Find the range of the function $f(x)=2 x-5$ given the domain is $D=\{1,-4,0,7\}$ |
| 3. | Solve the equation for 'c': $3 \mathrm{a}+2 \mathrm{c}=4 \mathrm{~m}$. |
| 4. | Solve the equation for ' h ': V = Iwh |

5. A right cone has a diameter that is twice its height.

|  | a) Find the radius in terms of the height. |
| :--- | :--- |
|  | b) Express the volume, V, as a function of the height, h. |
|  |  |


|  | c) Find the volume of the cone if the height is 6 centimeters. |
| :--- | :--- |
|  | d) If the volume is $243 \pi \mathrm{~cm}^{3}$, find the height of the cone. |

6. At a sand and gravel plant, sand is falling off a conveyor and onto a conical pile at the rate of $5 \pi$ cubic feet per minute. The diameter of the base of the cone is approximately three times the altitude.

|  | a) Express the volume of sand in the pile as a function of its <br> height. |
| :--- | :--- |
|  | b) Find the volume of the sand in the pile when it is 15 feet <br> high. |
|  | c) After 4 minutes have gone by, find the volume and <br> corresponding height of the sand pile. |

7. A closed box with a square base of side $x$ has a surface area of $100 \mathrm{ft}^{2}$.

|  | a) Find the length of the height, $y$, in terms of the side of the <br> base, $x$. |
| :--- | :--- |


|  | b) Express the volume, V, of the box as a function of $x$. |
| :--- | :--- |
|  | c) Find the volume when $x=4$ feet. |
|  |  |

8. An empty cylindrical tank has a height of 20 meters and a radius of 4 meters. Water is poured into the tank at a constant rate. After 5 minutes, the height of the water in the tank is 5 meters.
a) Sketch a picture of the problem situation.

|  | b) What is the volume of the water after 5 minutes. |
| :--- | :--- |
|  | C) Express the volume, V, of the water in the tank as a <br> function of the height, $h$. |
|  | d) What is the volume of the water if the height is 12 meters? |

9. A rectangular dog pen is constructed using a barn wall as one side and 60 m of fencing for the other three sides.
a) Sketch a picture of the problem situation.

|  | b) Let $x$ be the width of the pen touching the barn and $y$ be <br> the length of the pen that is parallel to the barn. Express the <br> length of the pen in terms of the width $x$. |
| :--- | :--- |


|  | c) Express the area of the pen in terms of the width $x$. |
| :--- | :--- |
|  | d) Find the area of the pen when $x$ is 15 meters. |

10. An aquarium without a glass top of height 1.5 feet is to have a volume of $6 \mathrm{ft}^{3}$. Let x denote the length of the base and let y denote the width.

|  | a) Express $y$ as a function of $x$. |
| :--- | :--- |
|  | b) Express the total number of square feet of glass needed <br> as a function of $x$. |

11. The area bounded by a vertical line through the point ( $x, 0$ ) and the line $y=4 x$ is revolved around the x-axis.

|  | a) Give the coordinates of a point on the non-vertical line in <br> terms of $x$. |
| :--- | :--- |
|  | b) Find the volume of the resulting solid in terms of $x$. |
|  | c) Find the volume when $x=3$. |

12. A cylindrical can has a volume of $400 \pi \mathrm{~cm}^{3}$. The material for the top and bottom costs 2 cents $/ \mathrm{cm}^{2}$. The material for the vertical surfaces costs 1 cent $/ \mathrm{cm}^{2}$.

|  | a) Find the height of the cylinder in terms of the radius. |
| :--- | :--- |
|  | b) Express the surface area of the can as a function of the <br> radius, $r$. |
|  | c) Find the area when $r=4 \mathrm{~cm}$. |
|  | d) Find the cost of the material to cover the can. Answer in <br> dollars (use the $\pi$ key). |

13. Sand is poured out of a container onto the beach and forms a right circular cone. The height of the cone is always equal to the diameter of the cone.
a) Sketch a picture of the problem situation.

|  | b) Find the height in terms of $x$, the radius of the cone. |
| :--- | :--- |
|  | c) Find the volume of the cone in terms of $x$. |


|  | d) If the volume is $144 \pi \mathrm{in}^{3}$, find the height and the radius of <br> the conical pile. |
| :--- | :--- |

14. A baseball diamond is a square with 90 -foot sides. A runner has taken a 9 -foot lead from first base. At the moment the ball is pitched, the runner runs toward second base at $27 \mathrm{ft} / \mathrm{sec}$.
a) Sketch a picture of the problem situation.

|  | b) How many seconds will it take to get to second base with <br> his 9-foot lead? |
| :--- | :--- |
|  | c) Express the runner's straight-line distance, d, from home <br> plate as a function of the time, t , after the ball is thrown. |
|  | d) How far did the runner go after 2 seconds? |

