REVIEW \#18: SPHERES, COMPOSITE FIGURES, \& CHANGING

DIMENSIONS

PART 1: SURFACE AREA \& VOLUME OF SPHERES

Find the measure(s) indicated. Answers to even numbered problems should be rounded to the nearest thousandth.

$\text { 1. } \begin{aligned} S A & = \\ V & = \end{aligned}$	
$\text { 2. } \begin{aligned} S A & = \\ V & = \end{aligned}$	
3.	The Volume of a sphere is 36π cubic units. Find the length of the radius.
4.	The Surface Area of a sphere is 64π square units. Find the length of its radius.
5.	The circumference of a great circle of a sphere is 44π. Find the Surface Area of the sphere.

Refer to the sphere graphed on the coordinate plane below to answer the following questions.

7. \qquad
What is the volume of the sphere rounded to the nearest thousandth?

PART 2: COMPOSITE FIGURES

Find the measure(s) indicated.

8. $ـ$	Determine the surface area of the composite figure to the nearest tenth. The figure is two right cones with a common base.			
9.11 cm		$	$	Three inches around both ends of the box will be cut and
:---				
folded to form the top and bottom. Determine the				
volume of the box. Round to the nearest tenth if				
necessary.				
18 in.				

10. __	To the nearest cubic centimeter, determine the volume of packing peanuts needed to fill the box if the radius of the enclosed cylinder is 4 centimeters and the cylinder is centered in the box.
11.	

PART 3: CHANGING DIMENSIONS

Answer each problem as indicated.

12.	The Volume of a cylinder is $80 \pi \mathrm{~mm}^{3}$. If the height is increased to one-and-a-half times its original length, what is its new Volume?
$13 . _$	lf the dimensions of a cylinder are increased to three times their original length, by what factor would the volume be affected?

14.	The Volume of a cone is $96 \pi \mathrm{~cm}^{3}$. If its dimensions are reduced to one-half their original length, by what factor would the volume be affected?
$15 . \ldots$	The Volume of a cone is 48π cubic units. If its radius is reduced to one-half its original length and the height is tripled, what would its new volume be?

PART 4: SPHERICAL GEOMETRY

Answer the following questions as true or false. If false explain why.

16. __ A line segment on a sphere is an arc of a great circle.	
17. __	Lines on a sphere intersect at only one point.
18.	There are no perpendicular lines on a sphere.
19.	The sum of the angle measures in a spherical triangle is less than 180°.
20.	In spherical geometry if you know the measures of two angles of a triangle, you can determine the measure of the third angle.
$21 . ـ$	In spherical geometry two points determine a line.

PART 5: SOLIDS OF REVOLUTION

22.	Find the area and perimeter of the region formed by the lines $y=2 x, y=8$, and $x=0$.
23.	What is the surface area of the figure formed by revolving the region described in problem 22 around the y-axis?
24.	Name the figure created by revolving the region formed by the lines $Y=\sqrt{\left(36-x^{2}\right)}$ and $\mathrm{y}=0$ around the x -axis.
25.	What is the volume of the 3-D figure described in problem 24 ?
26.	What is the area and perimeter of the region formed by the lines $y=2, y=6, x=-4$, and $x=5$.
27.	What is the volume of the figure formed by revolving the region described in problem 26 around the x-axis?

