the tank at a constant rate. After 3 mins, the height of the water in the tank is 2 ft .

| | a) What is the volume of the water in the tank after 3
 minutes? |
| :--- | :--- | :--- |
| | b) What is the rate at which water is poured into the tank? |
| | c) Express the volume of the water in the tank as a function
 of the height, h. |
| | d) What is the height of the water after 5 more minutes? |
| | e) What is the volume of the water if the height is 12 feet? |

2. A cylindrical tank full of water has a height of 40 meters and a diameter of 40 meters. Water is draining from the tank at a rate of $250 \mathrm{~m}^{3} / \mathrm{min}$.
a) Sketch a picture of the problem.

	b) Find the volume when the tank is full.
	c) Express the volume of the water in the tank as a function of its height, h.
	d) Find the volume of the water when the height is 15 meters.
	e) How long will it take for the tank to drain completely?

3. A cylindrical can has a volume of $900 \pi \mathrm{~cm}^{3}$.

	a) Find the height of the cylinder in terms of the radius.
	b) Express the surface area of the can as a function of the badius, r.
15 cm.	

4. If the volume of a right cylinder is 800π cubic units, write an expression for its lateral surface area as a function of its radius.
