MORE PRISMS \& CYLINDERS

Answer each problem as indicated.

1. $\mathrm{h}=$ $\mathrm{LA}=$ $\mathrm{TA}=$	The rectangular prism below has a volume of 64 cubic units. Find its height, Lateral Area, and Total Area.
2. $L A=$ \qquad $T A=$ \qquad $\mathrm{V}=$ \qquad	The base of a rectangular prism has a length of 3 units and a width of 2 units. The height is 5 units. Find the lateral area, total area, and volume of the prism.
3. $L A=$ $\mathrm{TA}=$ $V=$	The base of a triangular prism is an equilateral triangle with a side length of 14 cm . The height is 6 cm . Find the lateral area, total area, and volume of the prism.
4. $L A=$ \qquad $\mathrm{TA}=$ \qquad $V=$ \qquad	The base of a regular hexagonal prism has a side length of 6 in . The height of the prism is 12 in . Find the lateral area, total area, and volume of the prism.
5. $L A=$ $\mathrm{TA}=$ $V=$	A cylinder has a diameter of 12 centimeters and a height of 4 centimeters. Find the lateral area, total area, and volume of the cylinder.

6. $\mathrm{d}=\ldots$	A cylinder has a volume of $281.25 \pi \mathrm{~m}^{2}$. If the height is 5 m, what is the length of the diameter?
7. $\mathrm{r}=\ldots$	A cylinder has a lateral surface area of $96 \pi \mathrm{~cm}^{2}$. If the height is 12 cm , find the radius, total area, and volume.
$\mathrm{TA}=\ldots$	$\mathrm{V}=\square$
8.	You have 4500 cubic centimeters of wax. How many cylindrical candles can you make from the wax if each candle is 15 centimeters tall and has a diameter of 10 centimeters?

Review

9.	$\overline{J K}$ has endpoints $\mathrm{J}(1,3)$ and $\mathrm{K}(3,5)$. The intersection of $\overline{J K}$ and its perpendicular bisector is $(2,4)$. What is the equation for the perpendicular bisector of $\overline{J K} ?$
10.	What are the measures of the two acute angles of a right triangle if they measure $(8 x)^{\circ}$ and $(12 x)^{\circ} ?$

