\qquad PER.

Find the perimeter and area for each of the regular polygons below.

1. $\mathrm{P}=$ =
2. $\mathrm{P}=\underline{\square}$
3. Find the total area and net area under the curve from $-8 \leq x \leq 10$.
Total Area $=$ \qquad Net Area $=$ \qquad

REVIEW
Find the area of each of the following polygons.

10. $\mathrm{A}=$	
11. $\mathrm{A}=$	
12. $A=$	
13. $A=$	
14.	Which postulate or theorem justifies the congruence statement $\Delta \mathrm{STU} \cong \Delta \mathrm{VUT}$? A. ASA B. SSS C. HL D. SAS

15.	Which of the following congruence statements is true? F. $\angle \mathrm{A} \cong \angle \mathrm{B}$ G. $\overline{\mathrm{CE}} \cong \overline{\mathrm{DE}}$ H. $\triangle \mathrm{AED} \cong \triangle \mathrm{CEB}$ J. $\triangle \mathrm{AED} \cong \triangle \mathrm{BEC}$
16.	In $\triangle \mathrm{RST}, \mathrm{RT}=6 \mathrm{y}-2$. In $\triangle \mathrm{UVW}, \mathrm{UW}=2 \mathrm{y}+7 . \angle \mathrm{R} \cong \angle \mathrm{U}$, and $\angle \mathrm{S} \cong \angle \mathrm{V}$. What must be the value of y in order to prove that $\Delta \mathrm{RST} \cong \Delta \mathrm{UVW}$? A. 1.25 B. 2.25 C. 9.0 D. 11.5
17.	What is the approximate length of $\overline{M N}$ when the coordinates of its endpoints are $(-4,5)$ and $(-6,9)$? A. 2.4 units C. 10.8 units B. 4.5 units D. 17.2 units
18.	What is the equation of the line that passes through the points $(-4,1)$ and (4, -6)? F. $y=-\frac{7}{8} x-\frac{5}{2}$ H. $y=-\frac{8}{7} x+\frac{25}{7}$ G. $y=-\frac{7}{8} x+\frac{9}{2}$ J. $y=-\frac{8}{7} x-\frac{20}{7}$
19.	What is the value of ' x ' in the following diagram? F. 90 G. 70 H. 20 J. 10

