NAME DATE PER.

PERIMETER \& AREA OF REGULAR POLYGONS

Find the perimeter \& area for each of the regular polygons below.

1. $P=$ \qquad $A=$ \qquad	
2. $P=$ \qquad $A=$ \qquad	
3. $P=$ \qquad $A=$ \qquad	
4. $A=$	Find the area of a regular triangle with a perimeter of 144 inches.
5. $P=$ \qquad $A=$	Find the perimeter and area of a regular triangle with an apothem of 9 ft .

Find the perimeter \& area of each regular polygon.

6. $P=$ \qquad $A=$ \qquad	
7. $P=$ \qquad $A=$ \qquad	
8. $P=$ \qquad $A=$ \qquad	
9. $A=$	Find the area of a regular hexagon with a perimeter of 60 ft .
10. $A=$	Find the area of a regular hexagon with a perimeter of 24 in.
$\text { 11. } A=$	Find the area of a square with an apothem length of $2 \sqrt{2}$.

12.	In the figure below, $B C$ is parallel to $E D$ and $A E$ is perpendicular to ED. The measure of $\angle A B C$ is 130°. What is the measure of $\angle \mathrm{BAE}$ in degrees?
13.	Which of the following is true of all squares and all rectangles? I. All squares and all rectangles are equilateral. II. All squares and all rectangles are equiangular. III. All rectangles are squares. A. II only B. III only C. II and III only D. I, II, and III
14.	In the figure below, if ABCD is a rectangle, what type of triangle must $\triangle \mathrm{ABE}$ be? F. Equilateral G. Right H. Equiangular J. Isosceles K. Scalene
15.	If $A B C D E$ is a regular pentagon, what is the measure of $\angle C$? A. 45° B. 60° C. 90° D. 108° E. 120°

| 16. $\quad \|$Which of the following has the same value as $\sin \mathrm{M}$?
 A. $\sin \mathrm{N}$
 B. $\tan \mathrm{M}$
 C. $\cos \mathrm{N}$
 D. $\cos \mathrm{M}$ |
| :--- | :--- |
| $17 . _$ Scott finds that an office building casts a shadow that is 93 ft
 long when the angle of elevation to the sun is $60^{\circ} . \text { What is }$
 the height of the building? |
| F. 54 feet
 G. 81 feet
 H. 107 feet
 J. 161 feet |

